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The reaction of a paddlewheel-type diruthenium(II, II) com-
plex, [Ru2II,II(o-MeOPhCO2)4(THF)2] ([Ru2II,II]; o-MeOPhCO2

¹:
o-anisate), and chloranil (QCl4) leads to a charge transfer from
[Ru2II,II] to QCl4, forming a dimer-of-dimers of [Ru2II,III]+

units bridged by tetrachlorohydroquinonate dianion (QCl42¹):
[{Ru2II,III(o-MeOPhCO2)4(THF)}2(QCl4)].

A family of carboxylate-bridged paddlewheel diruthenium
complexes (abbreviated henceforth as [Ru2]) is not only a useful
building block for constructing metal­organic frameworks but
also a good functional module for functionalizing materials with
electronic or magnetic characteristics.1­7 A noteworthy func-
tional property of [Ru2] is its redox activity reversibly change-
able between [Ru2II,II] and [Ru2II,III]+, which concomitantly
enables the variation of spin ground state between S = 1 and
S = 3/2, respectively, without significant structural change.
Recently, our group has demonstrated the utility of carboxylate-
bridged [Ru2II,II] complexes as a good electron-donor (D)
module in charge-transfer systems with polycyano organic
acceptors (A) such as 7,7,8,8-tetracyanoquinodimethane
(TCNQ) and N,N¤-dicyanoquinodiimine (DCNQI) derivatives,
in which the D¼ A charge-transfer can be controlled by the
combination of the ionization potential of D and the electron
affinity of A.8­10 Even in such covalently bonded D­A systems,
magnetic and electron-transport properties of materials are
closely associated with the intralattice D¼ A charge transfer.
For a purpose of expanding D­A combinations, we have now
chosen chloranil (QCl4) as A, which can undergo two-step redox
reaction to produce QCl4•¹ (Cl4-semiquinonate) and QCl42¹

(Cl4-hydroquinonate) and have done an assembly reaction with
a relatively strong donor, [Ru2II,II(o-MeOPhCO2)4(THF)2] (o-
MeOPhCO2

¹: o-anisate, Figure S133):11 This reaction provided
a discrete D:A = 2:1 assembly, [{Ru2II,III(o-MeOPhCO2)4-
(THF)}2(QCl4)] (1), involving a complete charge transfer to
form QCl42¹.

Note that even though the reaction with a 1:1 molar mixture
of the components is carried out in a benzene solution,
independent of temperature, the final product 1 is always
composed of a 2:1 ratio of [Ru2] and QCl4, being a thermo-
dynamically stable material (to increase the yield, it was
finally carried out in a 2:1 molar ratio of [Ru2]/QCl4).12 Crystals
that are suitable for single-crystal X-ray crystallography were
finally obtained by a slow diffusion of the components in
benzene at an ambient temperature:12 This material is iso-
structural with the material obtained from a hot benzene
solution, as confirmed in X-ray powder reflection patterns
(Figure S233).

Compound 1 crystallizes in the monoclinic space group
P21/n with Z = 2.13 The asymmetric unit is composed of a half
of the formula unit, in which an inversion center is located at the
midpoint of the QCl4 moiety; that is, two [Ru2] units are
crystallographically equivalent. Compound 1 has a dimer-of-
dimers structural motif with a QCl4 bridge, where one site of
[Ru2] moieties is capped by THF (Figure 1). This type of
discrete material is quite rare in cases using carboxylate-bridged
[Ru2] complexes,2,14 because high-symmetric [Ru2] units, in
general, act as an edge of arrays as seen in most assembled
materials,8,10 and little is known about producing asymmetric
axial coordinating sites in such [Ru2] units. This is very likely
because the asymmetric geometry 4,0-[Ru2], which is defined
by the orientation of MeO groups of o-anisate ligands, is
consequently stabilized in the dimer-of-dimers form to avoid
steric hindrance between [Ru2] units via a bridge of relatively
small molecule of QCl4. Indeed, the precursor, [Ru2II,II(o-
MeOPhCO2)4(THF)2], takes a cis-2,2-[Ru2] configuration, which
provides equivalent axial sites each coordinating THF
(Figure S133). For the bridging array of [THF­{Ru(2)­Ru(1)}­
QCl4­{Ru­Ru}­THF], relevant bond distances and angles
are: Ru(1)­Ru(2) = 2.2774(5)¡, Ruð1Þ­Oð13ÞQCl4 =
2.119(3)¡, Ru(2)­O(14)THF = 2.344(3)¡, Ruð2Þ­Ruð1Þ­
Oð13ÞQCl4 = 176.47(8)°, Ru(1)­Ru(2)­O(14)THF = 174.32(7)°,
Ruð1Þ­Oð13Þ­Cð33ÞQCl4 = 125.9(3)°. The bond lengths in the
[Ru2] and QCl4 moieties can be used to estimate the degree of
charge transfer from [Ru2] to QCl4. The Ru­Oeq (Oeq: carbox-
ylate oxygen) bond length characteristically reflects the oxida-
tion state of [Ru2], which is, in general, found in the range of
2.07­2.09¡ for [Ru2II,II] and 2.01­2.03¡ for [Ru2II,III]+.15,16 The
average Ru­Oeq length for [Ru2] in 1 is: 2.022¡, which means
the [Ru2II,III]+ state (Table S133). Note that the notation of mixed
valency (e.g., II,III) is merely a formality for easily under-

Figure 1. ORTEP plot of 1 (30% probability ellipsoids).
Hydrogen atoms are omitted for clarity.
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standing the valence of [Ru2] moiety: The nature of mixed-
valency cannot be discussed in such metal­metal bonded
families even if an asymmetric unit was formed. Considering
the charge balance of the neutral material of 1, the QCl4 moiety
should be divalent (i.e., QCl42¹). Table S133 shows bond
distances of the QCl4 moiety in 1 (C­O = 1.314(5)¡,
CO­CCl = 1.418(5) and 1.407(4)¡, CCl­CCl = 1.380(6)¡) and
relevant materials.17­27 The C­O (a; see the figure in Table S133)
and C­C (CO­CCl, b; CCl­CCl, c) bonds of QCl4 are character-
istically changeable in a modification between quinonoid and
benzenoid forms, in particular the C­C bonds accurately reflect
the charge on an aromatic ring: The C­O distance in the
benzenoid form of QCl42¹ (ca. 1.27­1.33; single-bond character)
is longer than that in the quinonoid form of QCl40 (ca. 1.20­
1.23; double-bond character), and the C­C bonds of b and c
(see the figure in Table S133) tend to become equally in the
benzenoid form of QCl42¹ with ¦(b­c) ¯ 0.1, while they are
clearly distinguishable in the semiquinonate form of QCl4•¹ with
¦(b­c) µ 0.1 and quinonoid form of QCl40 with (¦(b­c) > 0.13
(Table S133). These trends provide us a conclusion on QCl4 in 1
taking the benzenoid form with a valence of ¹2, i.e., hydro-
quinonate form (QCl42¹).

To ascertain the charge distribution between [Ru2] and QCl4
moieties, infrared spectra of 1 was measured on a KBr pellet,
and Figure 2 shows those together with QCl40 and [Ru2II,III(o-
MeOPhCO2)4(THF)2]BF4 newly synthesized for comparison
(Figure S333).28 In general, p-quinones have a characteristic
C­O stretching band at around 1630­1700 cm¹1;29 actually,
QCl40 exhibits a strong band at ca. 1690 cm¹1, which tends to
shift ca. 150 cm¹1 to a lower frequency in QCl4•¹ and further to
a lower frequency in QCl42¹. No C=O stretching band was
observed for 1, but unfortunately, we also could not assign
the C­O stretching band, because it seems as if there is no
characteristic band for the C­O stretching in the typical range
(1420­1490 cm¹1)29 expected (left of Figure 2), although two
bands at 474 and 904 cm¹1 in 1 certainly originate from the
QCl42¹ moiety (right of Figure 2). A wide band observed at
around 1350­1440 cm¹1 may be overlapping it.

Figure 3 shows powder reflection spectra of 1, together with
those of QCl4, [Ru2II,II(o-MeOPhCO2)4(THF)2], and [Ru2II,III(o-
MeOPhCO2)4(THF)2]BF4 for comparison. Comparing those
spectra, we can find a unique absorption for 1 at around
10900 cm¹1 (1.35 eV), assignable to a QCl42¹­to­[Ru2II,III]+

transition, proving the charge distribution of [{Ru2II,III}+­
(QCl42¹)­{Ru2II,III}+].

This conclusion on the charge distribution is supported by
the magnetic behavior. » and »T vs. T plots for 1 are shown in
Figure 4. The »T value of 4.40 cm3Kmol¹1 at 300K continu-
ously decreased to 1.65 cm3Kmol¹1 at 1.8K. The characteristic
value at 300K and a monotonic decrease of »T with relatively
large values at low temperatures indicate that this behavior
displays the paramagnetic nature of [Ru2II,III]+ mediated by a
diamagnetic QCl42¹.30 The » and »T values were simulated in
the entire temperature range by using a Curie paramagnetic
model with S = 3/2 involving zero-field splitting (D), temper-
ature-independent paramagnetism (»TIP), and intermolecular
interactions (zJ) commonly used for magnetically isolated or
weakly interacting [Ru2II,III]+ complexes.1,2,7,8g zJ was intro-
duced in the framework of the mean-field approximation
(z = number of adjacent magnetic centers, assuming z = 1 for
this case). The best fit of parameters were: g = 2.191(2),
D/kB = 101.9(7)K, J/kB = ¹0.795(5) K, and »TIP = 52(16) ©
10¹6 cm3mol¹1 with R = 1 ¹ ­[(»Tcalc ¹ »Tobs)2­(»Tobs)]2 =
0.99998 (fitted curves are red in Figure 4). The obtained values
of g, which are larger than 2.00, and D are typical for [Ru2II,III]+

complexes1,2,7,8g and in good agreement with the values
(g = 2.2607(8), D/kB = 106.4(6)K, J/kB µ 0K, and »TIP =
34(11) © 10¹6 cm3mol¹1) for [Ru2II,III(o-MeOPhCO2)4(THF)2]-

Figure 2. IR spectra of 1 (black) together with those of QCl4
(blue) and [Ru2II,III(o-MeOPhCO2)4(THF)2]BF4 (red). Figure 3. Powder reflection spectra of 1 (black), QCl4 (blue),

[Ru2II,II(o-MeOPhCO2)4(THF)2] (green), and [Ru2II,III(o-
MeOPhCO2)4(THF)2]BF4 (red) measured based on a BaSO4
pellet.

Figure 4. Temperature dependence of » and »T of 1, where
the red solid lines represent best-fit curves using a Curie
paramagnetic model for S = 3/2 with parameters noted in the
text.
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BF4 (Figure S433). The small J value indicates that the
[Ru2II,III]+ units are almost magnetically isolated, although the
present exchange should be attributed to a superexchange via
QCl42¹. This magnetic nature with a weak superexchange via
QCl42¹ was also found in [Fe(tpp)]2(QCl4).29

In conclusion, the reaction between [Ru2II,II(o-
MeOPhCO2)4(THF)2] and QCl4 occurs a full charge transfer
to form divalent tetrachlorohydroquinonate (QCl42¹), which
is stabilized in a formation of neutral dimer-of-dimers with
an array of [THF­{Ru2II,III}­(QCl42¹)­{Ru2II,III}­THF]. This
charge distribution is very likely because the [Ru2II,II(o-
MeOPhCO2)4(THF)2] unit has a significantly small ionization
potential, which can overcome an on-site Coulomb repulsion
on QCl4. Indeed, the HOMO level of [Ru2II,II(o-MeOPhCO2)4-
(THF)2] calculated based on atomic coordinates from X-ray
crystallography using basic functions of UB3LYP/LANL2TZ(f)
for Ru and 6-31+G* for other elements is ¹3.727 eV (¤*
character with ¢ spin), which is much higher than ¹4.133 eV
and ¹4.162 for [Ru2II,II(PhCO2)4(THF)2]16 and [Ru2II,II(o-
MePhCO2)4(THF)2],8g respectively. Thus, the formation of
two-electron-transferred species QCl42¹ is quite reasonable,
because the LUMO level of QCl40 (¹4.642 eV)31 is significantly
lower than the HOMO level of [Ru2II,II(o-MeOPhCO2)4(THF)2]
as was seen in a set of [Ru2(m-MePhCO2)4(THF)2] and BTDA-
TCNQ (m-MePhCO2

¹: m-methylbenzoate; BTDA-TCNQ:
bis(1,2,5-thiadiazolo)tetracyanoquinodimethane) that led to a
two-electron transfer in a D2A system.8g Finally, it is noteworthy
that the present material is the first of charge-transferred
assembly derived by the reaction of paddlewheel [Ru2II,II] units
with benzoquinone derivatives.32
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