A Dimer-of-dimers Composed of Paddlewheel Diruthenium(II, III) Complexes and a Bridge of Tetrachlorohydroquinonate(2-) Derived by Intramolecular Charge Transfers

Masahisa Itoh,1 Yuichiro Asai,1 Hiromichi Kamo,1 Akira Miura,1 and Hitoshi Miyasaka*2

¹Department of Chemistry, Graduate School of Science, Tohoku University,

6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578

²Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192

(Received September 27, 2011; CL-110787; E-mail: miyasaka@se.kanazawa-u.ac.jp)

The reaction of a paddlewheel-type diruthenium(II, II) complex, $[Ru_2^{II,II}(o-MeOPhCO_2)_4(THF)_2]$ ($[Ru_2^{II,II}]$; $o-MeOPhCO_2^-$: o-anisate), and chloranil (QCl₄) leads to a charge transfer from $[Ru_2^{II,II}]$ to QCl₄, forming a dimer-of-dimers of $[Ru_2^{II,III}]^+$ units bridged by tetrachlorohydroquinonate dianion (QCl₄²⁻): [{Ru₂^{II,II}(o-MeOPhCO₂)₄(THF)}₂(QCl₄)].

A family of carboxylate-bridged paddlewheel diruthenium complexes (abbreviated henceforth as [Ru₂]) is not only a useful building block for constructing metal-organic frameworks but also a good functional module for functionalizing materials with electronic or magnetic characteristics.¹⁻⁷ A noteworthy functional property of [Ru₂] is its redox activity reversibly changeable between $[Ru_2^{II,II}]$ and $[Ru_2^{II,III}]^+$, which concomitantly enables the variation of spin ground state between S = 1 and S = 3/2, respectively, without significant structural change. Recently, our group has demonstrated the utility of carboxylatebridged [Ru2^{II,II}] complexes as a good electron-donor (D) module in charge-transfer systems with polycyano organic acceptors (A) such as 7,7,8,8-tetracyanoquinodimethane (TCNQ) and N,N'-dicyanoquinodiimine (DCNQI) derivatives, in which the $D \rightarrow A$ charge-transfer can be controlled by the combination of the ionization potential of D and the electron affinity of A.⁸⁻¹⁰ Even in such covalently bonded D-A systems, magnetic and electron-transport properties of materials are closely associated with the intralattice $D \rightarrow A$ charge transfer. For a purpose of expanding D-A combinations, we have now chosen chloranil (QCl₄) as A, which can undergo two-step redox reaction to produce QCl4. (Cl4-semiquinonate) and QCl42-(Cl₄-hydroquinonate) and have done an assembly reaction with a relatively strong donor, [Ru2^{II,II}(o-MeOPhCO2)4(THF)2] (o-MeOPhCO₂⁻: o-anisate, Figure S1³³):¹¹ This reaction provided a discrete D:A = 2:1 assembly, $[{Ru_2^{II,III}(o-MeOPhCO_2)_4}]$ $(THF)_2(QCl_4)$] (1), involving a complete charge transfer to form QCl_4^{2-} .

Note that even though the reaction with a 1:1 molar mixture of the components is carried out in a benzene solution, independent of temperature, the final product **1** is always composed of a 2:1 ratio of $[Ru_2]$ and QCl₄, being a thermodynamically stable material (to increase the yield, it was finally carried out in a 2:1 molar ratio of $[Ru_2]/QCl_4$).¹² Crystals that are suitable for single-crystal X-ray crystallography were finally obtained by a slow diffusion of the components in benzene at an ambient temperature:¹² This material is isostructural with the material obtained from a hot benzene solution, as confirmed in X-ray powder reflection patterns (Figure S2³³).

Figure 1. ORTEP plot of 1 (30% probability ellipsoids). Hydrogen atoms are omitted for clarity.

Compound 1 crystallizes in the monoclinic space group $P2_1/n$ with Z = 2.¹³ The asymmetric unit is composed of a half of the formula unit, in which an inversion center is located at the midpoint of the OCl₄ moiety; that is, two [Ru₂] units are crystallographically equivalent. Compound 1 has a dimer-ofdimers structural motif with a QCl₄ bridge, where one site of [Ru₂] moieties is capped by THF (Figure 1). This type of discrete material is quite rare in cases using carboxylate-bridged [Ru₂] complexes,^{2,14} because high-symmetric [Ru₂] units, in general, act as an edge of arrays as seen in most assembled materials,^{8,10} and little is known about producing asymmetric axial coordinating sites in such [Ru₂] units. This is very likely because the asymmetric geometry 4,0-[Ru₂], which is defined by the orientation of MeO groups of o-anisate ligands, is consequently stabilized in the dimer-of-dimers form to avoid steric hindrance between [Ru₂] units via a bridge of relatively small molecule of QCl₄. Indeed, the precursor, [Ru₂^{II,II}(o-MeOPhCO₂)₄(THF)₂], takes a *cis*-2,2-[Ru₂] configuration, which provides equivalent axial sites each coordinating THF (Figure S1³³). For the bridging array of [THF-{Ru(2)-Ru(1)}-QCl₄-{Ru-Ru}-THF], relevant bond distances and angles are: Ru(1)-Ru(2) = 2.2774(5)Å, $Ru(1)-O(13)_{OCL} =$ Ru(2) - Ru(1) -2.119(3)Å, $Ru(2)-O(14)_{THF} = 2.344(3) \text{ Å},$ $O(13)_{QCl_4} = 176.47(8)^\circ$, $Ru(1)-Ru(2)-O(14)_{THF} = 174.32(7)^\circ$, $Ru(1)-O(13)-C(33)_{QCl_4} = 125.9(3)^\circ$. The bond lengths in the [Ru₂] and QCl₄ moieties can be used to estimate the degree of charge transfer from [Ru₂] to QCl₄. The Ru-O_{eq} (O_{eq}: carboxylate oxygen) bond length characteristically reflects the oxidation state of [Ru2], which is, in general, found in the range of 2.07–2.09 Å for $[Ru_2^{II,II}]$ and 2.01–2.03 Å for $[Ru_2^{II,III}]^+$.^{15,16} The average Ru-Oed length for [Ru2] in 1 is: 2.022 Å, which means the $[Ru_2^{II,III}]^+$ state (Table S1³³). Note that the notation of mixed valency (e.g., II,III) is merely a formality for easily under-

Figure 2. IR spectra of **1** (black) together with those of QCl₄ (blue) and $[Ru_2^{II,III}(o-MeOPhCO_2)_4(THF)_2]BF_4$ (red).

standing the valence of [Ru₂] moiety: The nature of mixedvalency cannot be discussed in such metal-metal bonded families even if an asymmetric unit was formed. Considering the charge balance of the neutral material of 1, the QCl₄ moiety should be divalent (i.e., QCl42-). Table S133 shows bond distances of the QCl₄ moiety in 1 (C–O = 1.314(5) Å, $C_0-C_{Cl} = 1.418(5)$ and 1.407(4) Å, $C_{Cl}-C_{Cl} = 1.380(6)$ Å) and relevant materials.^{17–27} The C–O (a; see the figure in Table S1³³) and C-C (C₀-C_{Cl}, b; C_{Cl}-C_{Cl}, c) bonds of QCl₄ are characteristically changeable in a modification between guinonoid and benzenoid forms, in particular the C-C bonds accurately reflect the charge on an aromatic ring: The C-O distance in the benzenoid form of QCl_4^{2-} (ca. 1.27–1.33; single-bond character) is longer than that in the quinonoid form of QCl_4^0 (ca. 1.20– 1.23; double-bond character), and the C-C bonds of b and c(see the figure in Table S1³³) tend to become equally in the benzenoid form of QCl_4^{2-} with $\Delta(b-c) \leq 0.1$, while they are clearly distinguishable in the semiquinonate form of QCl₄^{•-} with $\Delta(b-c) \approx 0.1$ and quinonoid form of QCl₄⁰ with ($\Delta(b-c) > 0.13$ (Table $S1^{33}$). These trends provide us a conclusion on QCl₄ in **1** taking the benzenoid form with a valence of -2, i.e., hydroquinonate form (QCl_4^{2-}) .

To ascertain the charge distribution between [Ru₂] and QCl₄ moieties, infrared spectra of 1 was measured on a KBr pellet, and Figure 2 shows those together with QCl4⁰ and [Ru2^{II,III}(o-MeOPhCO₂)₄(THF)₂]BF₄ newly synthesized for comparison (Figure S3³³).²⁸ In general, *p*-quinones have a characteristic C-O stretching band at around 1630-1700 cm^{-1,29} actually, OCl_4^0 exhibits a strong band at ca. 1690 cm⁻¹, which tends to shift ca. 150 cm⁻¹ to a lower frequency in QCl₄^{•-} and further to a lower frequency in QCl₄²⁻. No C=O stretching band was observed for 1, but unfortunately, we also could not assign the C-O stretching band, because it seems as if there is no characteristic band for the C-O stretching in the typical range $(1420-1490 \text{ cm}^{-1})^{29}$ expected (left of Figure 2), although two bands at 474 and $904 \,\mathrm{cm}^{-1}$ in 1 certainly originate from the QCl_4^{2-} moiety (right of Figure 2). A wide band observed at around $1350-1440 \text{ cm}^{-1}$ may be overlapping it.

Figure 3 shows powder reflection spectra of **1**, together with those of QCl₄, $[Ru_2^{II,II}(o-MeOPhCO_2)_4(THF)_2]$, and $[Ru_2^{II,III}(o-MeOPhCO_2)_4(THF)_2]BF_4$ for comparison. Comparing those spectra, we can find a unique absorption for **1** at around 10900 cm⁻¹ (1.35 eV), assignable to a QCl₄²⁻–to– $[Ru_2^{II,III}]^+$ transition, proving the charge distribution of $[{Ru_2^{II,III}}^+ (QCl_4^{2-}) - {Ru_2^{II,III}}^+]$.

Figure 3. Powder reflection spectra of 1 (black), QCl₄ (blue), $[Ru_2^{II,II}(o-MeOPhCO_2)_4(THF)_2]$ (green), and $[Ru_2^{II,II}(o-MeOPhCO_2)_4(THF)_2]BF_4$ (red) measured based on a BaSO₄ pellet.

Figure 4. Temperature dependence of χ and χT of 1, where the red solid lines represent best-fit curves using a Curie paramagnetic model for S = 3/2 with parameters noted in the text.

This conclusion on the charge distribution is supported by the magnetic behavior. χ and χT vs. T plots for 1 are shown in Figure 4. The χT value of 4.40 cm³ K mol⁻¹ at 300 K continuously decreased to 1.65 cm³ K mol⁻¹ at 1.8 K. The characteristic value at 300 K and a monotonic decrease of χT with relatively large values at low temperatures indicate that this behavior displays the paramagnetic nature of [Ru2^{II,III}]⁺ mediated by a diamagnetic $QCl_4^{2-.30}$ The χ and χT values were simulated in the entire temperature range by using a Curie paramagnetic model with S = 3/2 involving zero-field splitting (D), temperature-independent paramagnetism (χ_{TIP}), and intermolecular interactions (zJ) commonly used for magnetically isolated or weakly interacting $[Ru_2^{II,III}]^+$ complexes.^{1,2,7,8g} zJ was introduced in the framework of the mean-field approximation (z = number of adjacent magnetic centers, assuming <math>z = 1 for this case). The best fit of parameters were: g = 2.191(2), $D/k_{\rm B} = 101.9(7) \,{\rm K}$, $J/k_{\rm B} = -0.795(5) \,{\rm K}$, and $\chi_{\rm TIP} = 52(16) \times 10^{-6} \,{\rm cm}^3 \,{\rm mol}^{-1}$ with $R = 1 - \Sigma[(\chi T_{\rm calc} - \chi T_{\rm obs})^2 \Sigma(\chi T_{\rm obs})]^2 = 0.99998$ (fitted curves are red in Figure 4). The obtained values of g, which are larger than 2.00, and D are typical for $[Ru_2^{II,III}]^+$ complexes^{1,2,7,8g} and in good agreement with the values $(g = 2.2607(8), D/k_{\rm B} = 106.4(6) \text{ K}, J/k_{\rm B} \approx 0 \text{ K}, \text{ and } \chi_{\rm TIP} = 34(11) \times 10^{-6} \text{ cm}^3 \text{ mol}^{-1})$ for $[\text{Ru}_2^{II,III}(o-\text{MeOPhCO}_2)_4(\text{THF})_2]$ - BF₄ (Figure S4³³). The small *J* value indicates that the $[Ru_2^{II,III}]^+$ units are almost magnetically isolated, although the present exchange should be attributed to a superexchange via QCl_4^{2-} . This magnetic nature with a weak superexchange via QCl_4^{2-} was also found in $[Fe(tpp)]_2(QCl_4)^{.29}$

conclusion, the reaction between [Ru₂^{II,II}(o-In MeOPhCO₂)₄(THF)₂] and QCl₄ occurs a full charge transfer to form divalent tetrachlorohydroquinonate (QCl42-), which is stabilized in a formation of neutral dimer-of-dimers with an array of $[THF-{Ru_2^{II,III}}-(QCl_4^{2-})-{Ru_2^{II,III}}-THF]$. This charge distribution is very likely because the $[Ru_2^{II,II}(o-$ MeOPhCO₂)₄(THF)₂] unit has a significantly small ionization potential, which can overcome an on-site Coulomb repulsion on QCl₄. Indeed, the HOMO level of [Ru₂^{II,II}(o-MeOPhCO₂)₄-(THF)₂] calculated based on atomic coordinates from X-ray crystallography using basic functions of UB3LYP/LANL2TZ(f) for Ru and 6-31+G* for other elements is -3.727 eV (δ^* character with β spin), which is much higher than -4.133 eV and -4.162 for $[Ru_2^{II,II}(PhCO_2)_4(THF)_2]^{16}$ and $[Ru_2^{II,II}(o-$ MePhCO₂)₄(THF)₂],^{8g} respectively. Thus, the formation of two-electron-transferred species QCl_4^{2-} is quite reasonable, because the LUMO level of QCl_4^0 (-4.642 eV)³¹ is significantly lower than the HOMO level of $[Ru_2^{II,II}(o-MeOPhCO_2)_4(THF)_2]$ as was seen in a set of [Ru₂(m-MePhCO₂)₄(THF)₂] and BTDA-TCNQ (*m*-MePhCO₂⁻: *m*-methylbenzoate; BTDA-TCNQ: bis(1,2,5-thiadiazolo)tetracyanoquinodimethane) that led to a two-electron transfer in a D₂A system.^{8g} Finally, it is noteworthy that the present material is the first of charge-transferred assembly derived by the reaction of paddlewheel [Ru2^{II,II}] units with benzoquinone derivatives.³²

This work was financially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (Grant No. 21350032).

References and Notes

- 1 M. A. S. Aquino, Coord. Chem. Rev. 1998, 170, 141.
- 2 M. Mikuriya, D. Yoshioka, M. Handa, Coord. Chem. Rev. 2006, 250, 2194.
- a) Y. Liao, W. W. Shum, J. S. Miller, J. Am. Chem. Soc. 2002, 124, 9336.
 b) T. E. Vos, Y. Liao, W. W. Shum, J.-H. Her, P. W. Stephens, W. M. Reiff, J. S. Miller, J. Am. Chem. Soc. 2004, 126, 11630.
- 4 a) D. Yoshioka, M. Mikuriya, M. Handa, *Chem. Lett.* 2002, 1044.
 b) T. E. Vos, J. S. Miller, *Angew. Chem., Int. Ed.* 2005, 44, 2416.
- J. S. Miller, T. E. Vos, W. W. Shum, *Adv. Mater.* 2005, *17*, 2251.
 H. Miyasaka, Y. Asai, N. Motokawa, K. Kubo, M. Yamashita, *Inorg.*
- *Chem.* 2010, 49, 9116.
 H. Miyasaka, R. Clérac, C. S. Campos-Fernández, K. R. Dunbar,
- 7 H. Miyasaka, R. Clerac, C. S. Campos-Fernandez, K. K. Dunbar, *Inorg. Chem.* 2001, 40, 1663.
- a) H. Miyasaka, C. S. Campos-Fernández, R. Clérac, K. R. Dunbar, *Angew. Chem., Int. Ed.* 2000, 39, 3831. b) H. Miyasaka, T. Izawa, N. Takahashi, M. Yamashita, K. R. Dunbar, *J. Am. Chem. Soc.* 2006, *128*, 11358. c) N. Motokawa, T. Oyama, S. Matsunaga, H. Miyasaka, K. Sugimoto, M. Yamashita, N. Lopez, K. R. Dunbar, *Dalton Trans.* 2008, 4099. d) N. Motokawa, H. Miyasaka, M. Yamashita, K. R. Dunbar, *Angew. Chem., Int. Ed.* 2008, 47, 7760. e) N. Motokawa, T. Oyama, S. Matsunaga, H. Miyasaka, M. Yamashita, K. R. Dunbar, *CrystEngComm* 2009, *11*, 2121. f) H. Miyasaka, N. Motokawa, S. Matsunaga, M. Yamashita, K. Sugimoto, T. Mori, N. Toyota, K. R. Dunbar, *J. Am. Chem. Soc.* 2010, *132*, 1532. g) H. Miyasaka, T. Morita, M. Yamashita, *Chem. Commun.* 2011, *47*, 271.
- 9 N. Motokawa, H. Miyasaka, M. Yamashita, *Dalton Trans.* 2010, *39*, 4724.

- H. Miyasaka, N. Motokawa, T. Chiyo, M. Takemura, M. Yamashita, H. Sagayama, T.-h. Arima, J. Am. Chem. Soc. 2011, 133, 5338.
- 11 Elemental analysis (%) calcd for $C_{40}H_{44}O_{14}Ru_2$: C, 50.52; H, 4.66%. Found: C, 50.44; H, 4.60%. The crystal structure was determined by single-crystal X-ray crystallography as given in Figure S1³³ and CCDC-846070.
- 12 Compound 1 was synthesized as microcrystals refluxing under anaerobic conditions in a benzene solution (200 mL) of QCl₄ (78.4 mg, 0.32 mmol) for 89 h in a bottom-rounded Schlenk flask attached to a Soxhlet extractor containing a solid of [Ru₂,^{II,II}(*o*-MeOPhCO₂)₄(THF)₂] (608.4 mg, 0.64 mmol). During refluxing, brown microcrystals were precipitated. Yield: 32.8 mg, 10.2%. Elemental analysis (%). Calcd for 1, C₇₈H₇₂Cl₄O₂₈Ru₄: C, 46.8; H, 3.62%. Found: C, 47.1; H, 3.61%. The crystal samples suitable for X-ray crystallography were prepared using a slow diffusion technique.
- 13 Crystallographic data of **1**. $C_{78}H_{72}Cl_4O_{28}Ru_4$, $M_r = 2003.50$, Monoclinic, $P2_1/n$ (#14), a = 14.207(3) Å, b = 17.841(3) Å, c = 15.491(3) Å, $\beta = 94.589(2)^\circ$, V = 3913.7(11) Å³, T = 103 K, Z = 2, $D_{calcd} = 1.700$ g cm⁻³, $F_{000} = 2016.00$, $\lambda = 0.71070$ Å, μ (Mo K α) = 9.772 cm⁻¹, 25534 measured reflections, 6799 unique ($R_{int} = 0.0228$). $R_1 = 0.0423$ ($I > 2\sigma(I)$), $R_1 = 0.0492$ (all data), and $wR_2 = 0.1142$ (all data) with GOF = 1.096. CCDC-846069.
- 14 a) M. Handa, D. Yoshioka, Y. Sayama, K. Shiomi, M. Mikuriya, I. Hiromitsu, K. Kasuga, *Chem. Lett.* **1999**, 1033. b) D. Yoshioka, M. Mikuriya, M. Handa, *Bull. Chem. Soc. Jpn.* **2004**, 77, 2205. c) D. Yoshioka, M. Handa, H. Azuma, M. Mikuriya, I. Hiromitsu, K. Kasuga, *Mol. Cryst. Liq. Cryst.* **2000**, *342*, 133.
- Multiple Bonds between Metal Atoms, 2nd ed., ed. by F. A. Cotton, R. A. Walton, Oxford University Press, Oxford, 1993.
- 16 H. Miyasaka, N. Motokawa, R. Atsuumi, H. Kamo, Y. Asai, M. Yamashita, *Dalton Trans.* 2011, 40, 673.
- 17 S. S. C. Chu, G. A. Jeffrey, T. Sakurai, *Acta Crystallogr.* 1962, 15, 661.
- 18 S. H. Kim, W. T. Lim, N. H. Heo, Dyes Pigm. 1999, 41, 89.
- 19 K. Kozawa, T. Uchida, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1983, 39, 1233.
- 20 K. Yakushi, I. Ikemoto, H. Kuroda, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1973, 29, 2640.
- 21 I. J. Tickle, C. K. Prout, J. Chem. Soc., Perkin Trans. 2 1973, 724.
- 22 K. Nakasuji, M. Sasaki, T. Kotani, I. Murata, T. Enoki, K. Imaeda, H. Inokuchi, A. Kawamoto, J. Tanaka, *J. Am. Chem. Soc.* **1987**, *109*, 6970.
- 23 G. Zanotti, A. Del Pra, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1980, 36, 313.
- 24 E. J. Brandon, R. D. Rogers, B. M. Burkhart, J. S. Miller, *Chem. Eur. J.* **1998**, *4*, 1938.
- 25 J. L. de Boer, A. Vos, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1968, 24, 720.
- 26 S. K. Sikka, R. Chidambaram, Acta Crystallogr. 1967, 23, 107.
- 27 A. L. Rheingold, private communication in CCDC-213348.
- 28 Elemental analysis (%). Calcd for [Ru₂(*o*-MeOPhCO₂)₄(THF)₂]-BF₄•2H₂O, C₄₀H₄₈BF₄O₁₆Ru₂: C, 44.74; H, 4.51%. Found: C, 45.04; H, 4.67%. The crystal structure was determined by single-crystal X-ray crystallography as given in Figure S3³³ and CCDC-846071.
- 29 S. L. Kessel, D. N. Hendrickson, Inorg. Chem. 1980, 19, 1883.
- 30 The χT values at low temperatures for isolated $[Ru_2^{II,II}]$ complexes are much smaller than those for $[Ru_2^{II,III}]^+$ owing to the effect of larger zero-field splitting $(D/k_B = 340-420 \text{ K} \text{ for } [Ru_2^{II,II}])$ than for $[Ru_2^{II,III}]^+$. See refs 15 and 16.
- 31 For the calculations for QCl₄⁰, the atomic coordinates computeroptimized were used.
- 32 Handa, Mikuriya, et al. have reported a possible example of chargetransferred compounds, $[Ru_2(O_2CC(CH_3)_3)_4(9,10\text{-}aq)]_n$ (9,10-aq: 9,10-anthraquinone), in refs 14c and 2, but the details of it, even charge distribution between $[Ru_2]$ unit and 9,10-aq, were still unexplained.
- 33 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/index.html.